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The tunneling conductance between a metal and a multiband s-wave superconductor with a thin layer of
single-band s-wave superconductor sandwiched in between is examined in this paper. We show that an in-gap
peak in conductance curve is found as a result of the formation of in-gap bound state between the single-band
and multiband superconductor junctions if the phases of the superconducting order parameters of the multiband
superconductor are frustrated. The implication of this result in determining the gap symmetry of the iron-based
superconductors is discussed.
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With the discovery of the iron-based �pnictides� supercon-
ductors, the superconductivity characterized by more than
one order parameter, i.e., the multigap superconductors, be-
comes a hot topic. Band-structure calculations indicate that
the material has a quasi-two-dimensional electronic struc-
ture, with four bands centered around the � and M points in
the Brillouin zone, contributing to the Fermi surface. An im-
mediate issue of interests is thus the symmetry of the super-
conductor order parameters. Besides the obvious possibility
that all the bands share the same superconductor order-
parameter symmetry, it is also possible that the order param-
eters pick up more complicated configurations because of the
nontrivial Fermi-surface structure. For example, it has been
proposed that the order parameters may have s-wave sym-
metry but with opposite sign between bands centered at �
and M points.1–3 Other more exotic possibilities have also
been proposed.4

Experimentally, the absence of � phase shift between tun-
neling in different direction in scanning superconducting
quantum interference device �SQUID� microscopy5 and the
suppression of knight shift with decreasing temperature in
NMR �Ref. 6� experiments seem to exclude spin-triplet pair-
ing states. However controversy remains between the d-wave
and the exotic s-wave symmetries. The d-wave symmetry
gets support from NMR �Ref. 6� and lower critical-field
data,7 indicating existence of nodes in the superconducting
order parameter while the observations in angle-resolved
photoelectron spectroscopy8,9 favor nodeless gaps.

Thus an experiment which can distinguish the different
d-wave and s-wave gap symmetry possibilities is significant.
In this paper, we show that the quasiparticle tunneling
through a N-S1-S2 junction, where N, S1, and S2 represent
normal metal, a single-band s-wave superconductor, and the
targeted superconductor, respectively, provides a strong test
to the above problem when tunneling data from different
surfaces of target superconductor S2 and with different thick-
ness of S1 are collected. The geometry of the junction is
sketched in Fig. 1.

To begin with, we first review the situation of simple
s-wave and d-wave superconductors. We shall assume that
the superconductor order-parameter structure is prominent on
the x-y plane, and superconductivity along the z direction
mainly comes from Josephson effect, consistent with a quasi-

two-dimensional band structure. For the s-wave supercon-
ductor, it is expected that the tunneling spectrum will be
qualitatively similar, independent of the tunneling plane of
the targeted superconductor and the thickness �d� of S1. The
situation is, however, very different for the d-wave supercon-
ductor. The existence of a midgap state at the boundary be-
tween the d-wave superconductor and normal metal if the
surface is cut along the �110� direction10 leads to a zero-bias
peak in the tunneling spectrum along the �110� direction.
Thus the existence of a zero-bias peak in tunneling experi-
ment with one prominent surface orientation distinguishes
between conventional s- and d-wave superconductors.11

Next we consider a multiband s-wave superconductor
with order parameters of opposite sign. We shall call it
�s-wave superconductor in the following. It was pointed out
in Ref. 12 that in-gap bound states generally exist at the
interface between a single-band s-wave superconductor and a
�s-wave superconductor, and it is expected that they will
contribute to quasiparticle tunneling, leading to in-gap peaks
in the tunneling conductance through an N-S1-S2 junction.
We shall show in the following that the �s-wave supercon-
ductor has a rather unique tunneling spectrum that distin-
guishes itself from ordinary s or d wave superconductors.

We shall employ the semiclassical �WKB� approximation
in our calculation where band-structure effects and interband
scattering are largely neglected. This is justified because
similar to midgap states in the �110� surface of a d-wave
superconductor, the presence of in-gap states in the S1-S2
junction is protected by the topological structure of the prob-
lem and is not expected to be destroyed by these effects as
long as they are not too strong.12 The validity of this approxi-
mation will be discussed in more detail at the end of this
paper. The theory captures only the qualitative behaviors of
the tunneling spectrum which are insensitive to the details of
the microscopic Hamiltonian.

FIG. 1. �Color online� The geometry of the N-S1-S2 junction.
The solid �dashed� arrows denote the propagation direction of par-
ticles �holes�.
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We start with the Bogoliubov–de Gennes �BdG�
equations13 for the quasiparticle spectrum,

��i��u�i��r��
v�i��r�� � = �Ĥ�i� − � ��i��r��

��i���r�� − Ĥ�i� + �
��u�i��r��

v�i��r�� � , �1�

where i=1, . . . ,N, N is the number of contributing bands in

the multiband superconductor, Ĥ�i� is the band dispersion of
band i, and ��i��r��= ���i��x��ei��i��x� is the corresponding super-
conductor order parameter. � is the chemical potential. We
have assumed that quasiparticles at different bands are de-
coupled from each other in writing down Eq. �1�. The differ-
ent bands are coupled only implicitly through the Josephson
effect where13

�i�r�� � − �
j

Vij�c↑
�j��r��c↓

�j��r��	 ,

�c↑
�j��r��c↓

�j��r��	 is the pairing amplitude between electrons in
jth band, Vii� is the pairing interaction between electrons in
band i, and Vij�j� i� is the Josephson coupling between or-
der parameters in different bands. The relative phases be-
tween the order parameters in different bands is determined
by the signs of Vij’s.12

To model the N-S1-S2 junction, we assume

���i��x ,y ,z�� ,��i��x ,y ,z��= �0,0�, ��1 ,0�, and ��2

�i� ,��i�� in
the regions x	0, 0	x	d, and x
d, respectively. The dif-
ferent regions are connected by �-function scattering poten-
tials U1��x� and U2��x−d�, respectively, and the system is
assumed to be translational invariant in the �y ,z� direction.
We also assume that the �-function scattering potentials do
not introduce scattering between different bands, so that Eq.
�1� remains valid in the presence of the junction. Within this
approximation the total tunneling current is just the sum of
tunneling currents from all bands. Notice that we are allowed
to choose the phase of the single-band superconductor S1 to
be ��0	x	d�=0 since the overall phase of the system is a
pure gauge. On the other hand there are in general N differ-
ent phases ��i��x
d� in the multiband superconductor S2. We
shall assume that only two groups of ��i�’s exist, ��i�

= ��A ,�B�, with �A=�B+� in the bulk multiband supercon-
ductor ��s wave�, as proposed to be the case in the pnictide
superconductors.

The Josephson coupling between a single-band supercon-
ductor and a �s-wave superconductor has been analyzed in
Ref. 12. Let TA�B� be the Josephson coupling of the first
�second� group of bands to S1. It was found that when TA
� ��TB, then �A�B�=0 and �B�A�=�. This state respects
time-reversal symmetry and is called the TRI state. An alter-
native solution exists when TA�TB, at which case �A,�B
�0, �. The state breaks time-reversal symmetry and is
called the TRB state. The condition TA�TB for the TRB
state is satisfied only when there is a symmetry reason that
TA and TB are �almost� equal to each other. For the Fe pnic-
tides, this condition is satisfied for the electron pockets
around the two M points when the interface is perpendicular
to the �-X direction. When the interface is perpendicular to
the �-M direction, the hole pockets around the � point and
electron pockets around M points are coupled to the s-wave

superconductor with different tunneling strength, and hence
TRB state is not expected. However, the in-gap states in the
TRI state can offer the evidence for the opposite sign of the
order parameters for electron and hole pockets as we shall
see in this paper.

We first consider the tunneling conductance between the
s-wave superconductor and band i in the �s-wave supercon-
ductor with ��i�=�. Equation �1� has plane-wave solutions of
form

��r�� = �u�r��
v�r��

� = eiq��·r��eiqx�uq

vq
� , �2�

where we have neglected the band index i for brevity. uq and
vq satisfy

��uq

vq
� = ��q� �

� − �q�
��uq

vq
� , �3�

where �q� =�q� −� and �q� is the band dispersion. We shall as-
sume �q� =�2�q2+q�

2� /2m for all bands and �=�2kf
2 /2m in

our calculation where kf is the Fermi momentum and we
shall consider the semiclassical limit kf, m→� with v f
=�kf /m, remaining finite such that band-structure effects are
eliminated in our calculation, consistent with the assumption
that there is no interband scattering in our calculation.

For a given energy � and transverse momentum q�, there
are four possible longitudinal momenta q= �q+ , �q−, where
�q+�−�=2m
�x�q��+ �−��2− ���2� and �x�q��=�−�2q�

2 /2m.
The corresponding uq and vq are given by uq�vq�
=e+�−�i�/21

2 
1+ �−�
�q�

� �.
Applying these results to our junction problem the general

scattering wave function of an incoming wave from metal
side has the following form at various regions in space:

��N�x� = �eik+x + a1e−ik+x��1

0
� + a2eik−x�0

1
� ,

��S1
�x� = �a3eip+x + a4e−ip+x��up+

vp+

�
+ �a5e−ip−x + a6eip−x��up−

vp−

� ,

��S2
�x� = a7eiq+x�uq+

vq+

� + a8e−iq−x�uq−

vq−

� , �4�

where �=e−iq��·r�� and

�k+�−� = 2m
�x�q�� + �− ����� ,

�p+�−� = 2m
�x�q�� + �− ��2 − ��1�2� ,

�q+�−� = 2m
�x�q�� + �− ��2 − ��2�2� .

Notice that q� is the same at all regions because of momen-
tum conservation along the y-z directions. However �2
→�2

�i� and q+�−�
�i� ’s are in general different for different bands.
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The wave function has to satisfy the boundary conditions
at the interfaces

�N�0� − �S1
�0� = 0,

�N� �0� − �S1
� �0� = −

2mU1

�2 �N�0� ,

�S1
�d� − �S2

�d� = 0,

�S1
� �d� − �S2

� �d� = −
2mU2

�2 �S1
�d� , �5�

where the prime refers to the derivative with respect to the
spacial coordinate x. The above equations determine the
eight coefficients �an� entering Eq. �4�. The tunneling con-
ductance defined by dI /dV is proportional to �dq��k+
1
− �a1��=eV��2�+k−�a2��=eV��2�. In the semiclassical limit kf
�q�, the main contribution to the tunneling current comes
from electrons with normal incidence to the interface. In this
case we may approximate k+�k−�kf, �x��, and the
Blonder-Tinkham-Klapwijk �BTK� result

dI

dV
� 1 − �a1�� = eV��2 + �a2�� = eV��2 �6�

is recovered.14 We shall employ this approximation in the
following analysis.

To see the existence of bound states in the S1-S2 interface
we first look at the � dependence of the tunneling conduc-
tance. In Fig. 2 we plot dI /dV versus V for various values of
�. We have chosen �2=0.001�, U1=U2=�, and d=�c2,
where �c2�v f /�2 is the coherence length corresponding to
the superconducting gap �2 in generating the figure. First we
consider �=0 which represents tunneling between the usual
�unfrustrated� s-wave superconductor junctions. In this case
the conductance is peaked at the gap edges ��1 and �2, and
there is no in-gap peak. The peak within the lower gap edge

moves toward zero energy as � increases, corresponding to
the appearance of TRB states. Notice that there is no con-
ductance peak between �1 and �2.

Notice that instead of approaching the zero energy, the
conductance peak saturates at a finite value eV
0 when �
→�. This is because we have employed a finite thickness
d��c2 in our calculation. In this case the incoming and re-
flected waves inside S1 interfere and split the zero-energy
bound states into two states with the finite energy.

The thickness dependence of conductance is examined in
Fig. 3 where we compute the tunneling spectrum for �1
=�2 and �=� from d=0 to d�3�c2. When d=0, the tunnel-
ing behavior is the same as the case of normal-metal tunnel-
ing directly to a s-wave superconductor with no in-gap
bound states. As d increases, we see that an in-gap peak in
conductance is developed with the peak position moving to-
ward zero bias. The peak also becomes sharper as d in-
creases. The position of the peak as a function of d is shown
in the inset of Fig. 3 where it is clear that the peak position
approaches zero exponentially as d→�.12 Oscillatory behav-
ior is also found in the conductance curves at energy eV

�1 at large d. This is a result of interference between mul-
tiple reflecting waves and is observable only if the total path
length �approximately a few d� is smaller than the inelastic-
scattering mean-free path �l� of the quasiparticles. We note
that the existence of the in-gap conductance peak is indepen-
dent of the surface orientation for an �s-wave supercon-
ductor. This and the d dependence of the in-gap conductance
peak provide a clear distinction between an ordinary d-wave
and �s-wave superconductors.

The quantitative behavior of the tunneling conductance
depends strongly on the scattering parameters U1 and U2
which depends on crystal surface orientation and other mi-
croscopic details of the system. Figure 4 shows the dI /dV-V
curves with various contact barrier U1 and U2 for �=� and
�1=0.5�2. First we note that with U1 fixed, the conductance
is generally suppressed by U2 at energy eV
�1. At this
regime the quasiparticles do not see superconductor S1 and
the tunneling spectrum is qualitatively the same as the one
from a normal metal directly to a s-wave superconductor. We
also observe that the conductance peak within �1 originating

FIG. 2. �Color online� Tunneling conductance for various �: �a�
for �1=�2=0.001� and �b� for �1=0.5�2=0.0005�. U1=U2=�
and d=�c2 in both cases,.

FIG. 3. �Color online� Tunneling conductance for various d.
�1=�2=0.001�, U1=�, and U2=0. The inset is the d dependence
of the conductance peak position.
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from the in-gap bound state exists only for nonzero U1 and
becomes more pronounced as U1 increases. This is because
the incoming waves couple to the in-gap bound state only
when U1 is nonzero.

In the following we shall examine the TRI state in more
detail because this is the state likely to be observed in pnic-
tide superconductors. In this case there are two groups of
tunneling channels—one with ��i�=0 and the other with ��i�

=�. S1 couples strongly to the ��i�=0 bands �smaller U2� and
has weaker coupling �large U2� with the ��i�=� bands. The
tunneling conductance is a sum of contributions from all
bands. To compute the tunneling spectrum we shall assume
that the two groups of bands have the same gap magnitude
�2 and the s-wave superconductor has a weaker gap �1
=0.5�2. We shall also assume that U2���i�=��=2U2���i�=0�.
The two bands contribute equally to the conductance in our
calculation. As shown in Fig. 5, the conductance peak below
�1 appears only when S2 is a �s-wave superconductor. The
conductance of the s-wave superconductor is rather insensi-
tive to U2 while the in-gap conductance peak of the �s-wave
superconductor is sensitive to changing U2. In particular,
smaller U2 favors a sharper peak.

Experimentally the tunneling spectrum of a multiband su-
perconductor can be obtained rather straightforwardly from
scanning tunnel microscope �STM� experiments. The s-wave
superconductor can be introduced by coating the STM tip
with a thin layer of the s-wave superconductor, and our pre-
dictions can be tested by performing the experiment with
different thicknesses of coated s-wave superconductor on

different surfaces of the targeted superconductor. The tunnel-
ing barriers U2���i�� can be tuned by varying the distance
between the STM tip and the targeted superconductor. The
precise values depend also on the tunneling surface orienta-
tion.

Nature is much more complicated than what our simple
calculation presents which ignores the complicated band
structures of the material,15 proximity effects,16 and scatter-
ing between different bands.17 The existence of in-gap states
in a S1-N-S2 junction involving Fe-based superconductors
�S2� is indeed demonstrated in a two-band tight-binding
calculation.15 We note, however, that the quantitative proper-
ties of the tunneling spectrum can be modified by these ef-
fects. For example, the gap magnitudes �1 and �2 close to
junction can be modified by proximity effect.16 The scatter-
ing between different bands in the �s-wave superconductor
due to the junction may also introduce different Andreev
bound states for particular orientations of crystal surfaces17

which enhances the tunneling conductance. This effect is
presumably important when U2 is large such that back-
scattering is strong. Notice however that this is also the re-
gime where the overall tunneling amplitude is suppressed
�see Fig. 4�. Therefore, the existence of in-gap peaks in the
tunneling conductance with sensitive dependence on d, U2,
but is insensitive to surface orientation provides a strong test
to the existence of in-gap states in a S1-S2 junction and the
gap symmetry of the Fe-based superconductors.

We thank H. H. Wen for interesting discussions during the
course of this work. This work was supported by HKUGC
through Grant No. CA05/06.Sc04.

FIG. 4. �Color online� The conductance with various contact
barriers. The other parameters are taken as �2=2�1=0.001� and
d=1.5�c2.

FIG. 5. �Color online� The total conductance when �a� S2 is a
s-wave superconductor and �b� S2 is a �s-wave superconductor.
�1=0.5�2=0.0005�, U1=�, and d=1.5�c2 in both cases. U2���i�

=��=2U2���i�=0� in the case of �s-wave superconductor.
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